Function for calculate compensated power of spatial determinant Q_s
.
Details
The power of compensated spatial determinant formula is
\(Q_s = \frac{q_s}{q_{s_{inforkep}}} = \frac{1 - \frac{\sum_{h=1}^L N_h \Gamma_{kdep}}{N \Gamma_{totaldep}}}{1 - \frac{\sum_{h=1}^L N_h \Gamma_{hind}}{N \Gamma_{totalind}}}\)
References
Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693
Author
Wenbo Lv lyu.geosocial@gmail.com
Examples
data('sim')
wt = sdsfun::inverse_distance_swm(sf::st_as_sf(sim,coords = c('lo','la')))
xa = sim$xa
xa_disc = sdsfun::discretize_vector(xa,5)
cpsd_spade(sim$y,xa,xa_disc,wt)
#> [1] 0.3530927