geographically optimal zones-based heterogeneity(GOZH) model
Arguments
- formula
 A formula of GOZH model.
- data
 A
data.frame,tibbleorsfobject of observation data.- cores
 (optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
- type
 (optional) The type of geographical detector, which must be
factor(default),interaction,risk,ecological. You can run one or more types at one time.- alpha
 (optional) Specifies the size of confidence level. Default is
0.95.- ...
 (optional) Other arguments passed to
rpart_disc().
Value
A list.
factorthe result of factor detector
interactionthe result of interaction detector
riskthe result of risk detector
ecologicalthe result of ecological detector
References
Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., & Meng, L. (2022). Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 185, 111–128. https://doi.org/10.1016/j.isprsjprs.2022.01.009
Author
Wenbo Lv lyu.geosocial@gmail.com
Examples
data('ndvi')
g = gozh(NDVIchange ~ ., data = ndvi)
g
#> ***   Geographically Optimal Zones-based Heterogeneity Model       
#>                 Factor Detector            
#> 
#> |   variable    | Q-statistic | P-value  |
#> |:-------------:|:-----------:|:--------:|
#> | Precipitation | 0.87255056  | 4.52e-10 |
#> |  Climatezone  | 0.82129550  | 2.50e-10 |
#> |  Tempchange   | 0.33324945  | 1.12e-10 |
#> |  Popdensity   | 0.22321863  | 3.00e-10 |
#> |    Mining     | 0.13982859  | 6.00e-11 |
#> |      GDP      | 0.09170153  | 3.96e-10 |
#> 
