Skip to contents

geographically optimal zones-based heterogeneity(GOZH) model

Usage

gozh(formula, data, cores = 1, type = "factor", alpha = 0.95, ...)

Arguments

formula

A formula of GOZH model.

data

A data.frame, tibble or sf object of observation data.

cores

(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.

type

(optional) The type of geographical detector, which must be factor(default), interaction, risk, ecological. You can run one or more types at one time.

alpha

(optional) Specifies the size of confidence level. Default is 0.95.

...

(optional) Other arguments passed to rpart_disc().

Value

A list.

factor

the result of factor detector

interaction

the result of interaction detector

risk

the result of risk detector

ecological

the result of ecological detector

References

Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., & Meng, L. (2022). Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 185, 111–128. https://doi.org/10.1016/j.isprsjprs.2022.01.009

Author

Wenbo Lv lyu.geosocial@gmail.com

Examples

data('ndvi')
g = gozh(NDVIchange ~ ., data = ndvi)
g
#> ***   Geographically Optimal Zones-based Heterogeneity Model       
#>                 Factor Detector            
#> 
#> |   variable    | Q-statistic | P-value  |
#> |:-------------:|:-----------:|:--------:|
#> | Precipitation | 0.87255056  | 4.52e-10 |
#> |  Climatezone  | 0.82129550  | 2.50e-10 |
#> |  Tempchange   | 0.33324945  | 1.12e-10 |
#> |  Popdensity   | 0.22321863  | 3.00e-10 |
#> |    Mining     | 0.13982859  | 6.00e-11 |
#> |      GDP      | 0.09170153  | 3.96e-10 |
#>