interactive detector for spatial associations(IDSA) model
Usage
idsa(
formula,
data,
wt = NULL,
discnum = 3:8,
discmethod = "quantile",
overlay = "and",
strategy = 2L,
increase_rate = 0.05,
cores = 1,
seed = 123456789,
alpha = 0.95,
...
)
Arguments
- formula
A formula of IDSA model.
- data
A
data.frame
,tibble
orsf
object of observation data.- wt
(optional) The spatial weight matrix. When
data
is not ansf
object, must providewt
.- discnum
(optional) Number of multilevel discretization. Default will use
3:8
.- discmethod
(optional) The discretization methods. Default all use
quantile
. Noted thatrpart
will userpart_disc()
; Others usesdsfun::discretize_vector()
.- overlay
(optional) Spatial overlay method. One of
and
,or
,intersection
. Default isand
.- strategy
(optional) Discretization strategy. When
strategy
is1L
, choose the highest SPADE model q-statistics to determinate optimal spatial data discretization parameters. Whenstrategy
is2L
, The optimal discrete parameters of spatial data are selected by combining LOESS model.- increase_rate
(optional) The critical increase rate of the number of discretization. Default is
5%
.- cores
(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
- seed
(optional) Random number seed, default is
123456789
.- alpha
(optional) Specifies the size of confidence level. Default is
0.95
.- ...
(optional) Other arguments passed to
cpsd_disc()
.
Value
A list.
interaction
the interaction result of IDSA model
risk
whether values of the response variable between a pair of overlay zones are significantly different
number_individual_explanatory_variables
the number of individual explanatory variables used for examining the interaction effects
number_overlay_zones
the number of overlay zones
percentage_finely_divided_zones
the percentage of finely divided zones that are determined by the interaction of variables
Note
Please note that all variables in the IDSA model need to be continuous data.
The IDSA model requires at least \(2^n-1\) calculations when has \(n\) explanatory variables. When there are more than 10 explanatory variables, carefully consider the computational burden of this model. When there are a large number of explanatory variables, the data dimensionality reduction method can be used to ensure the trade-off between analysis results and calculation speed.
References
Yongze Song & Peng Wu (2021) An interactive detector for spatial associations, International Journal of Geographical Information Science, 35:8, 1676-1701, DOI:10.1080/13658816.2021.1882680
Author
Wenbo Lv lyu.geosocial@gmail.com
Examples
data('sim')
sim1 = sf::st_as_sf(sim,coords = c('lo','la'))
g = idsa(y ~ ., data = sim1)
g
#> *** Interactive Detector For Spatial Associations
#>
#> | variable | PID |
#> |:------------:|:---------:|
#> | xa ∩ xb | 0.5540009 |
#> | xb ∩ xc | 0.5467294 |
#> | xc | 0.5411351 |
#> | xa ∩ xc | 0.4515003 |
#> | xa ∩ xb ∩ xc | 0.4275805 |
#>
#> --------- IDSA model performance evaluation: --------
#> * Number of overlay zones : 9
#> * Percentage of finely divided zones : 0
#> * Number of individual explanatory variables : 2
#>
#> ## Different of response variable between a pair of overlay zones:
#>
#> | zone1st | zone2nd | Risk |
#> |:--------:|:--------:|:----:|
#> | zonexa_1 | zonexa_2 | No |
#> | zonexa_1 | zonexa_3 | Yes |
#> | zonexa_1 | zonexa_4 | No |
#> | zonexa_1 | zonexb_1 | Yes |
#> | zonexa_1 | zonexb_2 | No |
#>
#> #### Only the first five pairs of interactions and overlay zones are displayed! ####