power of spatial and multilevel discretization determinant(PSMD) and the corresponding pseudo-p value
Source:R/psd_pseudop.R
psmd_pseudop.Rd
Function for calculate power of spatial and multilevel discretization determinant and the corresponding pseudo-p value.
Usage
psmd_pseudop(
yobs,
xobs,
wt,
discnum = 3:8,
discmethod = "quantile",
cores = 1,
seed = 123456789,
permutations = 0,
...
)
Arguments
- yobs
Variable Y
- xobs
The original undiscretized covariable X.
- wt
The spatial weight matrix.
- discnum
(optional) Number of multilevel discretization. Default will use
3:8
.- discmethod
(optional) The discretization methods. Default will use
quantile
. Ifdiscmethod
is set torobust
, the functionrobust_disc()
will be used. Conversely, ifdiscmethod
is set torpart
, therpart_disc()
function will be used. Others usesdsfun::discretize_vector()
. Currently, only onediscmethod
can be used at a time.- cores
(optional) A positive integer(default is 1). If cores > 1, use parallel computation.
- seed
(optional) Random seed number, default is
123456789
.- permutations
(optional) The number of permutations for the PSD computation. Default is
0
, which means no pseudo-p values are calculated.- ...
(optional) Other arguments passed to
sdsfun::discretize_vector()
,robust_disc()
orrpart_disc()
.
Value
A tibble of power of spatial and multilevel discretization determinant and the corresponding pseudo-p value.
Details
The power of spatial and multilevel discretization determinant formula is \(PSMDQ_s = MEAN(Q_s)\)
References
Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693
Author
Wenbo Lv lyu.geosocial@gmail.com
Examples
data('sim')
wt = sdsfun::inverse_distance_swm(sf::st_as_sf(sim,coords = c('lo','la')))
psmd_pseudop(sim$y,sim$xa,wt)
#> # A tibble: 1 × 2
#> `Q-statistic` `P-value`
#> <dbl> <chr>
#> 1 0.310 No Pseudo-P Value