robust interaction detector(RID) model
Usage
rid(
formula,
data,
discvar = NULL,
discnum = 3:8,
minsize = 1,
strategy = 2L,
increase_rate = 0.05,
cores = 1
)
Arguments
- formula
A formula of RGD model.
- data
A
data.frame
,tibble
orsf
object of observation data.- discvar
Name of continuous variable columns that need to be discretized. Noted that when
formula
hasdiscvar
,data
must have these columns. By default, all independent variables are used asdiscvar
.- discnum
A numeric vector of discretized classes of columns that need to be discretized. Default all
discvar
use3:8
.- minsize
(optional) The min size of each discretization group. Default all use
1
.- strategy
(optional) Optimal discretization strategy. When
strategy
is1L
, choose the highest q-statistics to determinate optimal spatial data discretization parameters. Whenstrategy
is2L
, The optimal discrete parameters of spatial data are selected by combining LOESS model.- increase_rate
(optional) The critical increase rate of the number of discretization. Default is
5%
.- cores
(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
Note
Please set up python dependence and configure GDVERSE_PYTHON
environment variable if you want to run rid()
.
See vignette('rgdrid',package = 'gdverse')
for more details.
References
Zhang, Z., Song, Y., Karunaratne, L., & Wu, P. (2024). Robust interaction detector: A case of road life expectancy analysis. Spatial Statistics, 59(100814), 100814. https://doi.org/10.1016/j.spasta.2024.100814
Author
Wenbo Lv lyu.geosocial@gmail.com