Information-Theoretic Measures for Spatial Association
Arguments
- formula
A formula.
- data
A
data.frame
,tibble
orsf
object of observation data.- method
(optional) whether
vm
(default) oricm
.- beta
(optional) The \(\beta\) value used fo
vm
measure, default is1
.- unit
(optional) Logarithm base, default is
e
.- seed
(optional) Random number seed, default is
42
.- permutation_number
(optional) Number of Random Permutations, default is
999
.
Examples
sim = readr::read_csv(system.file('extdata/sim.csv',package = 'itmsa'))
#> Rows: 80 Columns: 4
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> dbl (4): z1, z2, x, y
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# \donttest{
# Information-theoretical V-measure
itm(z1 ~ z2, data = sim, method = 'vm')
#> # A tibble: 1 × 3
#> Variable Iv Pv
#> <chr> <dbl> <dbl>
#> 1 z2 0.361 0
# Information Consistency-Based Measures
itm(z1 ~ z2, data = sim, method = 'icm')
#> # A tibble: 1 × 3
#> Variable Iv Pv
#> <chr> <dbl> <dbl>
#> 1 z2 0.315 0
# }