Spatial autocorrelation test based on global moran index.
Arguments
- sfj
An
sf
object or can be converted tosf
bysf::st_as_sf()
.- wt
(optional) Spatial weight matrix. Must be a
matrix
class. Ifwt
is not provided,sdsfun
will use a first-order queen adjacency binary matrix.- alternative
(optional) Specification of alternative hypothesis as
greater
(default),lower
, ortwo.sided
.- symmetrize
(optional) Whether or not to symmetrize the asymmetrical spatial weight matrix wt by: 1/2 * (wt + wt'). Default is
FALSE
.
Value
A list with moran_test
class and result stored on the result
tibble.
Which contains the following information for each variable:
MoranI
observed value of the Moran coefficient
EI
expected value of Moran's I
VarI
variance of Moran's I (under normality)
ZI
standardized Moran coefficient
PI
p-value of the test statistic
Note
This is a C++
implementation of the MI.vec
function in spfilteR
package,
and embellishes the console output.
The return result of this function is actually a list
, please access the result
tibble using $result
.
The non-numeric columns of the attribute columns in sfj
are ignored.
Examples
gzma = sf::read_sf(system.file('extdata/gzma.gpkg',package = 'sdsfun'))
moran_test(gzma)
#> *** global moran test
#> -------------------------------------------------------------------
#> Variable MoranI EI VarI zI pI
#> ---------- ------------- ----------- ---------- ------- -----------
#> PS_Score 0.504972*** -0.008547 0.003119 9.195 1.877e-20
#>
#> EL_Score 0.351095*** -0.008547 0.003119 6.44 5.988e-11
#>
#> OH_Score 0.593021*** -0.008547 0.003119 10.77 2.347e-27
#>
#> IL_Score 0.483476*** -0.008547 0.003119 8.81 6.257e-19
#> -------------------------------------------------------------------
#>