Estimate GWR model coefficients
Usage
gwr_betas(
formula,
data,
bw = "AIC",
adaptive = TRUE,
kernel = "gaussian",
intercept = FALSE
)
Arguments
- formula
A formula.
- data
An
sf
object of observation data- bw
(optional) The bandwidth used in selecting models. The optimal bandwidth can be selected using one of two methods:
AIC
, andCV
. Default will useAIC
.- adaptive
(optional) Whether the bandwidth value is adaptive or not. Default is
TRUE
.- kernel
(optional) Kernel function. Default is
gaussian
.- intercept
(optional) Whether to include the intercept term in the coefficient
tibble. Default is
FALSE`.
Examples
# \donttest{
depression = system.file('extdata/Depression.csv',package = 'gdverse') |>
readr::read_csv() |>
sf::st_as_sf(coords = c('X','Y'), crs = 4326)
#> Rows: 1072 Columns: 13
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> dbl (13): X, Y, Depression_prevelence, PopulationDensity, Population65, NoHe...
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
gwr_betas(Depression_prevelence ~ ., data = depression)
#> # A tibble: 1,072 × 10
#> PopulationDensity Population65 NoHealthInsurance Neighbor_Disadvantage
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.00117 -0.0746 0.0681 0.493
#> 2 -0.00123 -0.0861 0.0826 0.546
#> 3 -0.00124 -0.0963 0.0999 0.816
#> 4 -0.00120 -0.102 0.0882 0.334
#> 5 -0.00116 -0.105 0.0931 0.271
#> 6 -0.00121 -0.103 0.0919 0.611
#> 7 -0.000301 -0.122 0.0801 0.248
#> 8 -0.000261 -0.104 0.113 0.394
#> 9 -0.000608 -0.0873 0.133 0.851
#> 10 -0.000668 -0.0831 0.139 0.812
#> # ℹ 1,062 more rows
#> # ℹ 6 more variables: Beer <dbl>, MentalHealthPati <dbl>, NatureParks <dbl>,
#> # Casinos <dbl>, DrinkingPlaces <dbl>, X.HouseRent <dbl>
gwr_betas(Depression_prevelence ~ ., data = depression, intercept = TRUE)
#> # A tibble: 1,072 × 11
#> Intercept PopulationDensity Population65 NoHealthInsurance
#> <dbl> <dbl> <dbl> <dbl>
#> 1 24.0 -0.00117 -0.0746 0.0681
#> 2 23.7 -0.00123 -0.0861 0.0826
#> 3 23.4 -0.00124 -0.0963 0.0999
#> 4 23.7 -0.00120 -0.102 0.0882
#> 5 23.4 -0.00116 -0.105 0.0931
#> 6 23.4 -0.00121 -0.103 0.0919
#> 7 22.6 -0.000301 -0.122 0.0801
#> 8 22.0 -0.000261 -0.104 0.113
#> 9 20.5 -0.000608 -0.0873 0.133
#> 10 20.6 -0.000668 -0.0831 0.139
#> # ℹ 1,062 more rows
#> # ℹ 7 more variables: Neighbor_Disadvantage <dbl>, Beer <dbl>,
#> # MentalHealthPati <dbl>, NatureParks <dbl>, Casinos <dbl>,
#> # DrinkingPlaces <dbl>, X.HouseRent <dbl>
# }