Skip to contents

convergent cross mapping

Usage

# S4 method for class 'data.frame'
ccm(
  data,
  cause,
  effect,
  libsizes,
  E = 3,
  tau = 0,
  k = E + 1,
  theta = 1,
  algorithm = "simplex",
  lib = NULL,
  pred = NULL,
  threads = length(libsizes),
  parallel.level = "low",
  bidirectional = TRUE,
  progressbar = TRUE
)

Arguments

data

observation data.

cause

name of causal variable.

effect

name of effect variable.

libsizes

number of time points used in prediction.

E

(optional) embedding dimensions.

tau

(optional) step of time lags.

k

(optional) number of nearest neighbors used in prediction.

theta

(optional) weighting parameter for distances, useful when algorithm is smap.

algorithm

(optional) prediction algorithm.

lib

(optional) libraries indices.

pred

(optional) predictions indices.

threads

(optional) number of threads to use.

parallel.level

(optional) level of parallelism, low or high.

bidirectional

(optional) whether to examine bidirectional causality.

progressbar

(optional) whether to show the progress bar.

Value

A list

xmap

cross mapping results

varname

names of causal and effect variable

bidirectional

whether to examine bidirectional causality

References

Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., Munch, S., 2012. Detecting Causality in Complex Ecosystems. Science 338, 496–500.

Examples

sim = logistic_map(x = 0.4,y = 0.4,step = 45,beta_xy = 0.5,beta_yx = 0)
ccm(sim,"x","y",libsizes = seq(5,35,5),E = 8,k = 7,threads = 1)
#> 
Computing: [========================================] 100% (done)                         
#> 
Computing: [========================================] 100% (done)                         
#>   libsizes      x->y      y->x
#> 1        5 0.6658725 0.4459743
#> 2       10 0.7903164 0.5440701
#> 3       15 0.8073800 0.5425474
#> 4       20 0.8056960 0.5364679
#> 5       25 0.8020987 0.5307466
#> 6       30 0.7983809 0.5253733
#> 7       35 0.7965829 0.5258838