Temporal Empirical Dynamic Modeling
Last
update: 2025-07-15
Last run: 2025-07-15
Source: Last run: 2025-07-15
vignettes/tEDM.Rmd
tEDM.Rmd
1. Introduction to the tEDM
package
The tEDM
package provides a suite of tools for exploring
and quantifying causality in time series using Empirical Dynamic
Modeling (EDM). It implements four fundamental EDM-based causal
discovery methods:
These methods enable researchers to:
Identify potential causal interactions without assuming a predefined model structure.
Distinguish between direct causation and indirect (mediated or confounded) influences.
Reconstruct underlying causal dynamics from replicated univariate time series observed across multiple spatial units.
2. Example data in the tEDM
package
Hong Kong Air Pollution and Cardiovascular Admissions
A daily time series dataset(from 1995-3 to 1997-11) for Hong Kong that includes cardiovascular hospital admissions and major air pollutant concentrations.
File: cvd.csv
Columns:
Column | Description |
---|---|
cvd |
Daily number of cardiovascular-related hospital admissions. |
rsp |
Respirable suspended particulates (μg/m³). |
no2 |
Nitrogen dioxide concentration (μg/m³). |
so2 |
Sulfur dioxide concentration (μg/m³). |
o3 |
Ozone concentration (μg/m³). |
Source: Data adapted from PCM article.
US County-Level Carbon Emissions Dataset
A panel dataset covering U.S. county-level temperature and carbon emissions across time.
File: carbon.csv.gz
Columns:
Column | Description |
---|---|
year |
Observation year (1981–2017). |
fips |
County FIPS code (5-digit Federal Information Processing Standard code). |
tem |
Mean annual temperature (in Kelvin). |
carbon |
Total carbon emissions per year (in kilograms of CO₂). |
Source: Data adapted from FsATE article.
COVID-19 Infection Counts in Japan
A spatio-temporal dataset capturing the number of confirmed COVID-19 infections across Japan’s 47 prefectures over time.
File: covid.csv
Structure:
- Each column represents one of the 47 Japanese
prefectures (e.g.,
Tokyo
,Osaka
,Hokkaido
). - Each row corresponds to a time step (daily).
Source: Data adapted from CMC article.
3. Case studies of the tEDM
package
Install the stable version:
install.packages("tEDM", dep = TRUE)
or dev version:
install.packages("tEDM",
repos = c("https://stscl.r-universe.dev",
"https://cloud.r-project.org"),
dep = TRUE)
Air Pollution and Cardiovascular Health in Hong Kong
Employing CCM, CMC and PCM to investigate the causal relationships between various air pollutants and cardiovascular diseases:
library(tEDM)
cvd = readr::read_csv(system.file("case/cvd.csv",package = "tEDM"))
## Rows: 1032 Columns: 5
## ── Column specification ─────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (5): cvd, rsp, no2, so2, o3
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(cvd)
## # A tibble: 6 × 5
## cvd rsp no2 so2 o3
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 214 73.7 74.5 19.1 17.4
## 2 203 77.6 80.9 18.8 39.4
## 3 202 64.8 67.1 13.8 56.4
## 4 182 68.8 74.7 30.8 5.6
## 5 181 49.4 62.3 23.1 3.6
## 6 129 67.4 63.6 17.4 6.73
cvd_long = cvd |>
tibble::rowid_to_column("id") |>
tidyr::pivot_longer(cols = -id,
names_to = "variable", values_to = "value")
fig1 = ggplot2::ggplot(cvd_long, ggplot2::aes(x = id, y = value, color = variable)) +
ggplot2::geom_line(linewidth = 1) +
ggplot2::labs(x = "Days (from 1995-3 to 1997-11)", y = "Concentrations or \nNO. of CVD admissions", color = "") +
ggplot2::theme_bw() +
ggplot2::theme(legend.direction = "horizontal",
legend.position = "inside",
legend.justification = c("center","top"),
legend.background = ggplot2::element_rect(fill = "transparent", color = NA))
fig1

Determining optimal embedding dimension:
tEDM::fnn(cvd,"cvd",E = 2:50,eps = stats::sd(cvd$cvd))
## E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8
## 0.8275862 0.4944072 0.3044807 0.2902240 0.2148676 0.2067210 0.1945010 0.1853360
## E:9 E:10 E:11 E:12 E:13 E:14 E:15 E:16
## 0.1863544 0.1894094 0.1832994 0.1843177 0.1782077 0.1710794 0.1680244 0.1680244
## E:17 E:18 E:19 E:20 E:21 E:22 E:23 E:24
## 0.1547862 0.1537678 0.1670061 0.1568228 0.1588595 0.1710794 0.1639511 0.1659878
## E:25 E:26 E:27 E:28 E:29 E:30 E:31 E:32
## 0.1670061 0.1873727 0.1659878 0.1751527 0.1731161 0.1812627 0.1710794 0.1802444
## E:33 E:34 E:35 E:36 E:37 E:38 E:39 E:40
## 0.1700611 0.1720978 0.1710794 0.1629328 0.1517312 0.1639511 0.1670061 0.1700611
## E:41 E:42 E:43 E:44 E:45 E:46 E:47 E:48
## 0.1659878 0.1649695 0.1670061 0.1690428 0.1619145 0.1670061 0.1792261 0.1822811
## E:49
## 0.1761711
Starting at \(E = 11\), the FNN ratio stabilizes near 0.18; thus, embedding dimension E and neighbor number k are chosen from 11 onward for subsequent self-prediction parameter selection.
tEDM::simplex(cvd,"cvd","cvd",E = 11:35,k = 12:36)
## The suggested E and k for variable cvd is 11 and 12
tEDM::simplex(cvd,"rsp","rsp",E = 11:35,k = 12:36)
## The suggested E and k for variable rsp is 11 and 13
tEDM::simplex(cvd,"no2","no2",E = 11:35,k = 12:36)
## The suggested E and k for variable no2 is 11 and 12
tEDM::simplex(cvd,"so2","so2",E = 11:35,k = 12:36)
## The suggested E and k for variable so2 is 11 and 18
tEDM::simplex(cvd,"o3","o3",E = 11:35,k = 12:36)
## The suggested E and k for variable o3 is 11 and 12
We first use CCM to explore the causal influences of air pollutants on the incidence of cardiovascular diseases.
rsp_cvd = tEDM::ccm(cvd,"rsp","cvd",libsizes = seq(32,1032,100),E = 11,k = c(13,12),progressbar = FALSE)
rsp_cvd
## libsizes rsp->cvd cvd->rsp
## 1 32 0.03212919 0.01228767
## 2 132 0.05654363 0.02018887
## 3 232 0.06463454 0.03607634
## 4 332 0.06064099 0.04698896
## 5 432 0.06180930 0.04813387
## 6 532 0.06262916 0.04713303
## 7 632 0.05983990 0.04859066
## 8 732 0.05386418 0.05365310
## 9 832 0.04783700 0.05779265
## 10 932 0.04788904 0.06048993
## 11 1021 0.11465191 0.10133554
no2_cvd = tEDM::ccm(cvd,"no2","cvd",libsizes = seq(32,1032,100),E = 11,k = 12,progressbar = FALSE)
no2_cvd
## libsizes no2->cvd cvd->no2
## 1 32 0.0725866 0.04646570
## 2 132 0.1223500 0.07452473
## 3 232 0.1440400 0.10979245
## 4 332 0.1463108 0.12676364
## 5 432 0.1493368 0.13259880
## 6 532 0.1505781 0.13601417
## 7 632 0.1463268 0.13721917
## 8 732 0.1392535 0.13837513
## 9 832 0.1352347 0.13943520
## 10 932 0.1359023 0.14033241
## 11 1021 0.2701247 0.18804876
so2_cvd = tEDM::ccm(cvd,"so2","cvd",libsizes = seq(32,1032,100),E = 11,k = c(18,12),progressbar = FALSE)
so2_cvd
## libsizes so2->cvd cvd->so2
## 1 32 0.05100118 0.03461720
## 2 132 0.07979493 0.07406730
## 3 232 0.07390120 0.08535797
## 4 332 0.06454759 0.09205499
## 5 432 0.06421670 0.09589412
## 6 532 0.06667487 0.09915476
## 7 632 0.06752325 0.10104920
## 8 732 0.06628738 0.10265838
## 9 832 0.06534601 0.10523615
## 10 932 0.06505378 0.10782963
## 11 1021 0.12820854 0.11510196
o3_cvd = tEDM::ccm(cvd,"o3","cvd",libsizes = seq(32,1032,100),E = 11,k = 12,progressbar = FALSE)
o3_cvd
## libsizes o3->cvd cvd->o3
## 1 32 0.002955184 0.02271010
## 2 132 -0.002839356 0.05643341
## 3 232 -0.009653301 0.07583492
## 4 332 -0.018512914 0.08387571
## 5 432 -0.019942039 0.08175905
## 6 532 -0.015815466 0.07819425
## 7 632 -0.014698935 0.07679967
## 8 732 -0.019196844 0.07226140
## 9 832 -0.023726153 0.06974574
## 10 932 -0.024137957 0.06943232
## 11 1021 0.013982373 0.09503517
figa = plot(rsp_cvd,ylimits = c(0,0.12),ybreaks = c(0,0.05,0.10))
figb = plot(no2_cvd,ylimits = c(0.03,0.30),ybreaks = seq(0.05,0.25,0.05))
figc = plot(so2_cvd,ylimits = c(0.03,0.15),ybreaks = c(0,0.15,0.05))
figd = plot(o3_cvd,ylimits = c(-0.05,0.1),ybreaks = c(-0.05,0.05,0.05))
fig2 = cowplot::plot_grid(figa, figb, figc, figd, ncol = 2,
label_fontfamily = 'serif',
labels = letters[1:4])
fig2

The results shown in Figure2 indicate the presence of the following causal influences:
- rsp → cvd
- no₂ → cvd
- so₂ → cvd
- cvd → rsp
- cvd → no₂
- cvd → so₂
- cvd → o₃
However, based on practical experience, the relationship between CVDs and air pollution is likely reflective rather than causal. Therefore, we further employ CCM to examine the causal paths of cvd → no₂ and cvd → o₃.
g1 = tEDM::cmc(cvd,"rsp","cvd",E = 11,k = 50,progressbar = FALSE)
g1
## neighbors rsp->cvd cvd->rsp
## 1 50 0.364 0.4696
g1$xmap
## neighbors x_xmap_y_mean x_xmap_y_sig x_xmap_y_upper x_xmap_y_lower
## 1 50 0.4696 0.645344 0.5990605 0.3401395
## y_xmap_x_mean y_xmap_x_sig y_xmap_x_upper y_xmap_x_lower
## 1 0.364 0.03509439 0.4904932 0.2375068
g2 = tEDM::cmc(cvd,"so2","cvd",E = 11,k = 50,progressbar = FALSE)
g2
## neighbors so2->cvd cvd->so2
## 1 50 0.046 0.46
g2$xmap
## neighbors x_xmap_y_mean x_xmap_y_sig x_xmap_y_upper x_xmap_y_lower
## 1 50 0.46 0.5434416 0.5890263 0.3309737
## y_xmap_x_mean y_xmap_x_sig y_xmap_x_upper y_xmap_x_lower
## 1 0.046 3.508029e-77 0.0938521 0
g3 = tEDM::cmc(cvd,"no2","cvd",E = 11,k = 50,progressbar = FALSE)
g3
## neighbors no2->cvd cvd->no2
## 1 50 0.2728 0.446
g3$xmap
## neighbors x_xmap_y_mean x_xmap_y_sig x_xmap_y_upper x_xmap_y_lower
## 1 50 0.446 0.4123805 0.5751162 0.3168838
## y_xmap_x_mean y_xmap_x_sig y_xmap_x_upper y_xmap_x_lower
## 1 0.2728 0.0001114126 0.3880356 0.1575644
g4 = tEDM::cmc(cvd,"o3","cvd",E = 11,k = 50,progressbar = FALSE)
g4
## neighbors o3->cvd cvd->o3
## 1 50 0.0536 0.4628
g4$xmap
## neighbors x_xmap_y_mean x_xmap_y_sig x_xmap_y_upper x_xmap_y_lower
## 1 50 0.4628 0.5733574 0.5922777 0.3333223
## y_xmap_x_mean y_xmap_x_sig y_xmap_x_upper y_xmap_x_lower
## 1 0.0536 8.756939e-60 0.1072525 0
The causal paths from CVDs to air pollutants are not statistically significant in the CMC analysis results, allowing us to rule out these four directions. Meanwhile, the causal strength from SO₂ to CVDs is too weak (approximately 0.05), excluding the existence of a causal path from SO₂ to CVDs. Therefore, we conclude that only RSP and NO₂ exhibit causal influences on CVDs, with no evidence of feedback causality.
We further aim to explore the potential causal interactions among different air pollutants. However, due to space constraints in this vignette, we limit our analysis to a single test case — specifically, examining whether NO₂ exerts a causal influence on Respirable Suspended Particulates (rsp).
no2_rsp = tEDM::pcm(cvd,"no2","rsp","cvd",libsizes = seq(32,1032,100),E = 11,k = c(12,13,12),progressbar = FALSE)
no2_rsp
## --------------------------------------
## ***partial cross mapping prediction***
## --------------------------------------
## libsizes no2->rsp rsp->no2
## 1 32 0.5003795 0.5287113
## 2 132 0.6586740 0.6540733
## 3 232 0.6739825 0.6725413
## 4 332 0.6869853 0.6898026
## 5 432 0.6936791 0.7003889
## 6 532 0.6972028 0.7064767
## 7 632 0.7021889 0.7115672
## 8 732 0.7038956 0.7154391
## 9 832 0.7051222 0.7172094
## 10 932 0.7053735 0.7181287
## 11 1021 0.7355427 0.7249313
##
## ------------------------------
## ***cross mapping prediction***
## ------------------------------
## libsizes no2->rsp rsp->no2
## 1 32 0.4973450 0.5286056
## 2 132 0.6727828 0.6705453
## 3 232 0.6958408 0.6953063
## 4 332 0.7076968 0.7127944
## 5 432 0.7114252 0.7198838
## 6 532 0.7128014 0.7238218
## 7 632 0.7132465 0.7269140
## 8 732 0.7139286 0.7281575
## 9 832 0.7148172 0.7286784
## 10 932 0.7156600 0.7287909
## 11 1021 0.7438401 0.7541179
figa = plot(no2_rsp,partial = FALSE,ylimits = c(0.45,0.8),ybreaks = seq(0.45,0.8,0.05))
figb = plot(no2_rsp,ylimits = c(0.45,0.8),ybreaks = seq(0.45,0.8,0.05))
fig3 = cowplot::plot_grid(figa, figb, ncol = 2,
label_fontfamily = 'serif',
labels = letters[1:2])
fig3

The CCM and PCM results between NO₂ and respirable suspended particulates show minimal differences and are both statistically significant, indicating the presence of a causal relationship between the two. Therefore, the final set of confirmed causal pathways is as follows (exclude those with no causal influence on CVDs):

Figure 4. Causal interactions between air pollutants and cardiovascular diseases in Hong Kong.
US County Carbon Emissions and Temperature Dynamics
To examine whether a causal relationship exists between annual mean temperature and total annual CO₂ emissions, we implement the CMC method across counties.
library(tEDM)
carbon = readr::read_csv(system.file("case/carbon.csv.gz",package = "tEDM"))
## Rows: 113627 Columns: 4
## ── Column specification ─────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (4): year, fips, tem, carbon
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(carbon)
## # A tibble: 6 × 4
## year fips tem carbon
## <dbl> <dbl> <dbl> <dbl>
## 1 1981 1001 17.4 192607687.
## 2 1982 1001 18.4 187149414.
## 3 1983 1001 16.9 191584445.
## 4 1984 1001 17.8 199157579.
## 5 1985 1001 17.9 205207564.
## 6 1986 1001 18.5 218446030.
carbon_list = dplyr::group_split(carbon, by = fips)
length(carbon_list)
## [1] 3071
Using the 100th county as an example, we determine the appropriate embedding dimension by applying the FNN method.
tEDM::fnn(carbon_list[[100]],"carbon",E = 2:10,eps = stats::sd(carbon_list[[100]]$carbon))
## E:1 E:2 E:3 E:4 E:5 E:6 E:7
## 0.37037037 0.03703704 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## E:8 E:9
## 0.00000000 0.00000000
When E equals 3, the FNN ratio begins to drop to zero; therefore, we select \(E = 3\) as the embedding dimension for the CMC analysis.
res = carbon_list |>
purrr::map_dfr(\(.x) {
g = tEDM::cmc(.x,"tem","carbon",E = 3,k = 20,progressbar = FALSE)
return(g$xmap)
})
head(res)
## neighbors x_xmap_y_mean x_xmap_y_sig x_xmap_y_upper x_xmap_y_lower
## 1 20 0.25125 2.124762e-03 0.4099436 0.09255637
## 2 20 0.20375 5.512985e-05 0.3477313 0.05976872
## 3 20 0.19875 3.159932e-05 0.3406271 0.05687288
## 4 20 0.19875 4.990860e-05 0.3443198 0.05318018
## 5 20 0.23875 1.142665e-03 0.3961644 0.08133556
## 6 20 0.17375 1.734913e-06 0.3074655 0.04003447
## y_xmap_x_mean y_xmap_x_sig y_xmap_x_upper y_xmap_x_lower
## 1 0.05125 2.626718e-31 0.1268212 0
## 2 0.05875 8.667168e-29 0.1364321 0
## 3 0.06125 8.776684e-26 0.1431602 0
## 4 0.06000 3.141877e-27 0.1397885 0
## 5 0.06250 1.945554e-26 0.1430922 0
## 6 0.05375 5.280357e-31 0.1292878 0
res_carbon = res |>
dplyr::select(neighbors,
carbon_tem = x_xmap_y_mean,
tem_carbon = y_xmap_x_mean) |>
tidyr::pivot_longer(c(carbon_tem, tem_carbon),
names_to = "variable", values_to = "value")
head(res_carbon)
## # A tibble: 6 × 3
## neighbors variable value
## <dbl> <chr> <dbl>
## 1 20 carbon_tem 0.251
## 2 20 tem_carbon 0.0512
## 3 20 carbon_tem 0.204
## 4 20 tem_carbon 0.0588
## 5 20 carbon_tem 0.199
## 6 20 tem_carbon 0.0612
fig_case2 = ggplot2::ggplot(res_carbon,
ggplot2::aes(x = variable, y = value, fill = variable)) +
ggplot2::geom_boxplot() +
ggplot2::theme_bw() +
ggplot2::scale_x_discrete(name = "",
labels = c("carbon_tem" = "carbon → tem",
"tem_carbon" = "tem → carbon")) +
ggplot2::scale_y_continuous(name = "Causal Strength") +
ggplot2::theme(legend.position = "none")
fig_case2

COVID-19 Spread Across Japanese Prefectures
We examine the COVID-19 transmission between Tokyo and other prefectures by applying CCM to identify the underlying causal dynamics of the epidemic spread
library(tEDM)
covid = readr::read_csv(system.file("case/covid.csv",package = "tEDM"))
## Rows: 334 Columns: 47
## ── Column specification ─────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (47): Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata, Fukushima, Ibarak...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(covid)
## # A tibble: 6 × 47
## Hokkaido Aomori Iwate Miyagi Akita Yamagata Fukushima Ibaraki Tochigi Gunma
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0
## # ℹ 37 more variables: Saitama <dbl>, Chiba <dbl>, Tokyo <dbl>, Kanagawa <dbl>,
## # Niigata <dbl>, Toyama <dbl>, Ishikawa <dbl>, Fukui <dbl>, Yamanashi <dbl>,
## # Nagano <dbl>, Gifu <dbl>, Shizuoka <dbl>, Aichi <dbl>, Mie <dbl>,
## # Shiga <dbl>, Kyoto <dbl>, Osaka <dbl>, Hyogo <dbl>, Nara <dbl>,
## # Wakayama <dbl>, Tottori <dbl>, Shimane <dbl>, Okayama <dbl>,
## # Hiroshima <dbl>, Yamaguchi <dbl>, Tokushima <dbl>, Kagawa <dbl>,
## # Ehime <dbl>, Kochi <dbl>, Fukuoka <dbl>, Saga <dbl>, Nagasaki <dbl>, …
The data are first differenced:
covid = covid |>
dplyr::mutate(dplyr::across(dplyr::everything(),
\(.x) c(NA,diff(.x))))
Using Tokyo’s COVID-19 infection data to test the optimal embedding dimension.
tEDM::fnn(covid,"Tokyo",E = 2:30,eps = stats::sd(covid$Tokyo)/10)
## E:1 E:2 E:3 E:4 E:5 E:6 E:7
## 0.79452055 0.16901408 0.01351351 0.00000000 0.00000000 0.00000000 0.00000000
## E:8 E:9 E:10 E:11 E:12 E:13 E:14
## 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## E:15 E:16 E:17 E:18 E:19 E:20 E:21
## 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## E:22 E:23 E:24 E:25 E:26 E:27 E:28
## 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## E:29
## 0.00000000
Since the FNN ratio begins to approach zero when E equals 4, embedding dimensions from 4 onward are evaluated, and the pair of E and k yielding the highest self-prediction accuracy is selected for the CCM procedure.
tEDM::simplex(covid,"Tokyo","Tokyo",E = 4:50,k = 5:60)
## The suggested E and k for variable Tokyo is 4 and 5
res = names(covid)[-match("Tokyo",names(covid))] |>
purrr::map_dfr(\(.l) {
g = tEDM::ccm(covid,"Tokyo",.l,E = 4,k = 5,tau = 0,progressbar = FALSE)
res = dplyr::mutate(g$xmap,x = "Tokyo",y = .l)
return(res)
})
head(res)
## libsizes x_xmap_y_mean x_xmap_y_sig x_xmap_y_upper x_xmap_y_lower
## 1 330 0.67946026 5.040237e-46 0.61673862 0.7336087
## 2 330 0.16587490 2.504472e-03 0.05896709 0.2690210
## 3 330 0.57198896 4.570356e-30 0.49456667 0.6404051
## 4 330 0.48695807 4.721760e-21 0.40002512 0.5652068
## 5 330 0.01813049 7.428103e-01 -0.09000951 0.1258480
## 6 330 0.59876324 1.747480e-33 0.52471981 0.6638149
## y_xmap_x_mean y_xmap_x_sig y_xmap_x_upper y_xmap_x_lower x y
## 1 0.7109490 4.377688e-52 0.6531163 0.7605365 Tokyo Hokkaido
## 2 0.4283765 3.684937e-16 0.3359501 0.5126315 Tokyo Aomori
## 3 0.7497992 8.652007e-61 0.6983692 0.7935262 Tokyo Iwate
## 4 0.7060805 4.274506e-51 0.6474744 0.7563843 Tokyo Miyagi
## 5 0.2951683 4.658751e-08 0.1933666 0.3906821 Tokyo Akita
## 6 0.5089213 3.832070e-23 0.4242690 0.5847557 Tokyo Yamagata
df1 = res |>
dplyr::select(x,y,y_xmap_x_mean,y_xmap_x_sig)|>
purrr::set_names(c("cause","effect","cs","sig"))
df2 = res |>
dplyr::select(y,x,x_xmap_y_mean,x_xmap_y_sig) |>
purrr::set_names(c("cause","effect","cs","sig"))
res_covid = dplyr::bind_rows(df1,df2)|>
dplyr::filter(cause == "Tokyo") |>
dplyr::arrange(dplyr::desc(cs))
head(res_covid,10)
## cause effect cs sig
## 1 Tokyo Osaka 0.9296920 2.534740e-144
## 2 Tokyo Kanagawa 0.9260169 7.921221e-141
## 3 Tokyo Saitama 0.9105236 7.469393e-128
## 4 Tokyo Chiba 0.9092392 6.936383e-127
## 5 Tokyo Hyogo 0.8998115 3.402957e-120
## 6 Tokyo Aichi 0.8990747 1.062894e-119
## 7 Tokyo Nara 0.8743578 5.100364e-105
## 8 Tokyo Ibaraki 0.8719708 9.088820e-104
## 9 Tokyo Shizuoka 0.8680988 8.611093e-102
## 10 Tokyo Gifu 0.8470633 4.766119e-92
Using 0.90
as the threshold (rounded to two decimal
places), we map the causal responses in the spread of COVID-19 from
Tokyo for those with a causal strength greater than
0.90
.
res_covid = res_covid |>
dplyr::mutate(cs = round(res_covid$cs,2)) |>
dplyr::filter(cs >= 0.90)
res_covid
## cause effect cs sig
## 1 Tokyo Osaka 0.93 2.534740e-144
## 2 Tokyo Kanagawa 0.93 7.921221e-141
## 3 Tokyo Saitama 0.91 7.469393e-128
## 4 Tokyo Chiba 0.91 6.936383e-127
## 5 Tokyo Hyogo 0.90 3.402957e-120
## 6 Tokyo Aichi 0.90 1.062894e-119
if (!requireNamespace("rnaturalearth")) {
install.packages("rnaturalearth")
}
## Loading required namespace: rnaturalearth
jp = rnaturalearth::ne_states(country = "Japan")
if (!requireNamespace("tidygeocoder")) {
install.packages("tidygeocoder")
}
## Loading required namespace: tidygeocoder
jpp = tibble::tibble(name = c("Tokyo",res_covid$effect)) |>
tidygeocoder::geocode(state = name, method = "arcgis",
long = "lon", lat = "lat")
## Passing 7 addresses to the ArcGIS single address geocoder
## Query completed in: 7.6 seconds
fig_case3 = ggplot2::ggplot() +
ggplot2::geom_sf(data = jp, fill = "#ffe7b7", color = "grey", linewidth = 0.45) +
ggplot2::geom_curve(data = jpp[-1,],
ggplot2::aes(x = jpp[1,"lon",drop = TRUE],
y = jpp[1,"lat",drop = TRUE],
xend = lon, yend = lat),
curvature = 0.2,
arrow = ggplot2::arrow(length = ggplot2::unit(0.2, "cm")),
color = "#6eab47", linewidth = 1) +
ggplot2::geom_point(data = jpp[-1,], ggplot2::aes(x = lon, y = lat),
color = "#cf574b", size = 1.25) +
ggrepel::geom_text_repel(data = jpp[-1,], color = "#cf574b",
ggplot2::aes(label = name, x = lon, y = lat)) +
ggplot2::geom_point(data = jpp[1,], ggplot2::aes(x = lon, y = lat),
color = "#2c74b7", size = 1.25) +
ggrepel::geom_text_repel(data = jpp[1,], color = "#2c74b7",
ggplot2::aes(label = name, x = lon, y = lat)) +
ggplot2::coord_sf(xlim = range(jpp$lon) + c(-0.45,0.45),
ylim = range(jpp$lat) + c(-0.75,0.75)) +
ggplot2::labs(x = "", y = "") +
ggplot2::theme_bw() +
ggplot2::theme(panel.background = ggplot2::element_rect(fill = "#9cd1fd", color = NA))
fig_case3

Reference
Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., Munch, S., 2012. Detecting Causality in Complex Ecosystems. Science 338, 496–500. https://doi.org/10.1126/science.1227079.
Leng, S., Ma, H., Kurths, J., Lai, Y.-C., Lin, W., Aihara, K., Chen, L., 2020. Partial cross mapping eliminates indirect causal influences. Nature Communications 11. https://doi.org/10.1038/s41467-020-16238-0.
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research. https://doi.org/10.1016/j.fmre.2023.01.007.
Clark, A.T., Ye, H., Isbell, F., Deyle, E.R., Cowles, J., Tilman, G.D., Sugihara, G., 2015. Spatial convergent cross mapping to detect causal relationships from short time series. Ecology 96, 1174–1181. https://doi.org/10.1890/14-1479.1.
Gan, T., Succar, R., Macrì, S., Marín, M.R., Porfiri, M., 2025. Causal discovery from city data, where urban scaling meets information theory. Cities 162, 105980. https://doi.org/10.1016/j.cities.2025.105980.