cross mapping cardinality
Arguments
- data
observation data.
- cause
name of causal variable.
- effect
name of effect variable.
- libsizes
(optional) number of time points used.
- E
(optional) embedding dimensions.
- tau
(optional) step of time lags.
- k
(optional) number of nearest neighbors.
- lib
(optional) libraries indices.
- pred
(optional) predictions indices.
- threads
(optional) number of threads to use.
- parallel.level
(optional) level of parallelism,
low
orhigh
.- bidirectional
(optional) whether to examine bidirectional causality.
- progressbar
(optional) whether to show the progress bar.
Value
A list
xmap
cross mapping results
cs
causal strength
varname
names of causal and effect variable
bidirectional
whether to examine bidirectional causality
References
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research.
Examples
sim = logistic_map(x = 0.4,y = 0.4,step = 45,beta_xy = 0.5,beta_yx = 0)
cmc(sim,"x","y",E = 4,k = 15,threads = 1)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
#> neighbors x->y y->x
#> 1 15 0.2533333 0.1266667