optimal parameter search for intersectional cardinality
Usage
# S4 method for class 'data.frame'
ic(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 2:10,
tau = 1,
k = E + 2,
dist.metric = "L1",
threads = length(pred),
parallel.level = "low"
)Arguments
- data
observation data.
- column
name of library variable.
- target
name of target variable.
- lib
(optional) libraries indices.
- pred
(optional) predictions indices.
- E
(optional) embedding dimensions.
- tau
(optional) step of time lags.
- k
(optional) number of nearest neighbors used in prediction.
- dist.metric
(optional) distance metric (
L1: Manhattan,L2: Euclidean).- threads
(optional) number of threads to use.
- parallel.level
(optional) level of parallelism,
loworhigh.
Value
A list
xmapcross mapping performance
varnamename of target variable
methodmethod of cross mapping
References
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research.
Examples
sim = logistic_map(x = 0.4,y = 0.4,step = 45,beta_xy = 0.5,beta_yx = 0)
ic(sim,"x","y",E = 4,k = 15:30,threads = 1)
#> The suggested E,k,tau for variable y is 4, 15 and 1