false nearest neighbours
Usage
# S4 method for class 'sf'
fnn(
data,
target,
lib = NULL,
pred = NULL,
E = 1:10,
tau = 1,
nb = NULL,
rt = 10,
eps = 2,
threads = detectThreads(),
trend.rm = TRUE
)
# S4 method for class 'SpatRaster'
fnn(
data,
target,
lib = NULL,
pred = NULL,
E = 1:10,
tau = 1,
rt = 10,
eps = 2,
threads = detectThreads(),
trend.rm = TRUE
)
Arguments
- data
The observation data.
- target
Name of target variable.
- lib
(optional) Libraries indices.
- pred
(optional) Predictions indices.
- E
(optional) Dimensions of the embedding.
- tau
(optional) Step of spatial lags.
- nb
(optional) The neighbours list.
- rt
(optional) escape factor.
- eps
(optional) neighborhood diameter.
- threads
(optional) Number of threads.
- trend.rm
(optional) Whether to remove the linear trend.
References
Kennel M. B., Brown R. and Abarbanel H. D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, Volume 45, 3403 (1992).
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
fnn(columbus,"crime")
#> E:1 E:2 E:3 E:4 E:5 E:6 E:7
#> 0.79591837 0.53061224 0.63265306 0.51020408 0.12244898 0.04081633 0.00000000
#> E:8
#> 0.00000000
# }