Skip to contents

false nearest neighbours

Usage

# S4 method for class 'sf'
fnn(
  data,
  target,
  E = 1:10,
  tau = 1,
  style = 1,
  lib = NULL,
  pred = NULL,
  dist.metric = "L1",
  rt = 10,
  eps = 2,
  threads = detectThreads(),
  detrend = TRUE,
  nb = NULL
)

# S4 method for class 'SpatRaster'
fnn(
  data,
  target,
  E = 1:10,
  tau = 1,
  style = 1,
  lib = NULL,
  pred = NULL,
  dist.metric = "L1",
  rt = 10,
  eps = 2,
  threads = detectThreads(),
  detrend = TRUE,
  grid.coord = TRUE
)

Arguments

data

observation data.

target

name of target variable.

E

(optional) embedding dimensions.

tau

(optional) step of spatial lags.

style

(optional) embedding style (0 includes current state, 1 excludes it).

lib

(optional) libraries indices.

pred

(optional) predictions indices.

dist.metric

(optional) distance metric (L1: Manhattan, L2: Euclidean).

rt

(optional) escape factor.

eps

(optional) neighborhood diameter.

threads

(optional) number of threads to use.

detrend

(optional) whether to remove the linear trend.

nb

(optional) neighbours list.

grid.coord

(optional) whether to detrend using cell center coordinates (TRUE) or row/column numbers (FALSE).

Value

A vector

References

Kennel M. B., Brown R. and Abarbanel H. D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, Volume 45, 3403 (1992).

Examples

columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
fnn(columbus,"crime")
#>        E:1        E:2        E:3        E:4        E:5        E:6        E:7 
#> 0.79591837 0.53061224 0.63265306 0.51020408 0.12244898 0.04081633 0.00000000 
#>        E:8 
#> 0.00000000 
# }