Skip to contents

false nearest neighbours

Usage

# S4 method for class 'sf'
fnn(
  data,
  target,
  lib = NULL,
  pred = NULL,
  E = 1:10,
  tau = 1,
  nb = NULL,
  rt = 10,
  eps = 2,
  threads = detectThreads(),
  detrend = TRUE
)

# S4 method for class 'SpatRaster'
fnn(
  data,
  target,
  lib = NULL,
  pred = NULL,
  E = 1:10,
  tau = 1,
  rt = 10,
  eps = 2,
  threads = detectThreads(),
  detrend = TRUE
)

Arguments

data

observation data.

target

name of target variable.

lib

(optional) libraries indices.

pred

(optional) predictions indices.

E

(optional) embedding dimensions.

tau

(optional) step of spatial lags.

nb

(optional) neighbours list.

rt

(optional) escape factor.

eps

(optional) neighborhood diameter.

threads

(optional) number of threads to use.

detrend

(optional) whether to remove the linear trend.

Value

A vector

References

Kennel M. B., Brown R. and Abarbanel H. D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, Volume 45, 3403 (1992).

Examples

columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
fnn(columbus,"crime")
#>        E:1        E:2        E:3        E:4        E:5        E:6        E:7 
#> 0.79591837 0.53061224 0.63265306 0.51020408 0.12244898 0.04081633 0.00000000 
#>        E:8 
#> 0.00000000 
# }