geographical convergent cross mapping
Arguments
- cause
Name of causal variable.
- effect
Name of effect variable.
- data
The observation data, must be
sf
orSpatRaster
object.- libsizes
A vector of library sizes to use.
- E
(optional) The dimensions of the embedding.
- nb
(optional) The neighbours list.
- RowCol
(optional) Matrix of selected row and cols numbers.
- trendRM
(optional) Whether to remove the linear trend.
Examples
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData")[1],
quiet=TRUE)
# \donttest{
gccm("HOVAL", "CRIME", data = columbus, libsizes = seq(5,45,5))
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
#> lib_sizes x_xmap_y_mean x_xmap_y_sig x_xmap_y_upper x_xmap_y_lower
#> 1 5 0.08036917 0.5830396 0.3535751 -0.2054710
#> 2 10 0.11368175 0.4367132 0.3826463 -0.1730466
#> 3 15 0.08758561 0.5495572 0.3599179 -0.1984998
#> 4 20 0.10310575 0.4808160 0.3734742 -0.1834084
#> 5 25 0.11585893 0.4279229 0.3845279 -0.1709056
#> 6 30 0.12976658 0.3741739 0.3964951 -0.1571649
#> 7 35 0.14387488 0.3240014 0.4085430 -0.1431116
#> 8 40 0.15749070 0.2798141 0.4200835 -0.1294382
#> 9 45 0.19913895 0.1701347 0.4548644 -0.0869252
#> y_xmap_x_mean y_xmap_x_sig y_xmap_x_upper y_xmap_x_lower
#> 1 0.2360232 0.1025384593 0.4850289 -0.04838467
#> 2 0.3207803 0.0246241859 0.5521699 0.04350830
#> 3 0.3509119 0.0134305363 0.5753370 0.07734760
#> 4 0.3638976 0.0101606494 0.5852114 0.09212820
#> 5 0.3814201 0.0068494208 0.5984324 0.11226434
#> 6 0.4063601 0.0037645270 0.6170483 0.14131062
#> 7 0.4355102 0.0017623390 0.6385121 0.17584874
#> 8 0.4612822 0.0008502925 0.6572289 0.20692617
#> 9 0.4838568 0.0004278528 0.6734276 0.23457638
# }