geographical convergent cross mapping
Usage
# S4 method for class 'sf'
gccm(
data,
cause,
effect,
libsizes,
E = 3,
tau = 1,
k = E + 1,
nb = NULL,
trendRM = TRUE,
progressbar = TRUE
)
# S4 method for class 'SpatRaster'
gccm(
data,
cause,
effect,
libsizes,
E = 3,
tau = 1,
k = E + 3,
RowCol = NULL,
trendRM = TRUE,
progressbar = TRUE
)
Arguments
- data
The observation data.
- cause
Name of causal variable.
- effect
Name of effect variable.
- libsizes
A vector of library sizes to use.
- E
(optional) The dimensions of the embedding.
- tau
(optional) The step of spatial lags.
- k
(optional) Number of nearest neighbors to use for prediction.
- nb
(optional) The neighbours list.
- trendRM
(optional) Whether to remove the linear trend.
- progressbar
(optional) whether to print the progress bar.
- RowCol
(optional) Matrix of selected row and cols numbers.
Examples
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData")[1],
quiet=TRUE)
# \donttest{
g = gccm(columbus, "HOVAL", "CRIME", libsizes = seq(5,45,5))
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
g
#> libsizes CRIME->HOVAL HOVAL->CRIME
#> 1 5 0.08036917 0.2360232
#> 2 10 0.11368175 0.3207803
#> 3 15 0.08758561 0.3509119
#> 4 20 0.10310575 0.3638976
#> 5 25 0.11585893 0.3814201
#> 6 30 0.12976658 0.4063601
#> 7 35 0.14387488 0.4355102
#> 8 40 0.15749070 0.4612822
#> 9 45 0.19913895 0.4838568
plot(g, ylimits = c(0,0.65))
# }