geographical convergent cross mapping
Usage
# S4 method for class 'sf'
gccm(
data,
cause,
effect,
libsizes,
E = 3,
tau = 1,
k = E + 2,
theta = 1,
algorithm = "simplex",
lib = NULL,
pred = NULL,
nb = NULL,
threads = detectThreads(),
parallel.level = "low",
bidirectional = TRUE,
trend.rm = TRUE,
progressbar = TRUE
)
# S4 method for class 'SpatRaster'
gccm(
data,
cause,
effect,
libsizes,
E = 3,
tau = 1,
k = E + 2,
theta = 1,
algorithm = "simplex",
lib = NULL,
pred = NULL,
threads = detectThreads(),
parallel.level = "low",
bidirectional = TRUE,
trend.rm = TRUE,
progressbar = TRUE
)
Arguments
- data
The observation data.
- cause
Name of causal variable.
- effect
Name of effect variable.
- libsizes
Number of spatial units used in prediction.
- E
(optional) Dimensions of the embedding.
- tau
(optional) Step of spatial lags.
- k
(optional) Number of nearest neighbors used in prediction.
- theta
(optional) Weighting parameter for distances, useful when
algorithm
issmap
.- algorithm
(optional) Algorithm used in prediction.
- lib
(optional) Libraries indices.
- pred
(optional) Predictions indices.
- nb
(optional) The neighbours list.
- threads
(optional) Number of threads.
- parallel.level
(optional) Level of parallelism,
low
orhigh
.- bidirectional
(optional) whether to examine bidirectional causality.
- trend.rm
(optional) Whether to remove the linear trend.
- progressbar
(optional) whether to show the progress bar.
Value
A list
xmap
cross mapping results
varname
names of causal and effect variable
bidirectional
whether to examine bidirectional causality
References
Gao, B., Yang, J., Chen, Z. et al. Causal inference from cross-sectional earth system data with geographical convergent cross mapping. Nat Commun 14, 5875 (2023).
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
g = gccm(columbus,"hoval","crime",libsizes = seq(5,45,5),E = 6)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
g
#> libsizes hoval->crime crime->hoval
#> 1 5 0.1301861 0.2642894
#> 2 10 0.1762769 0.3961522
#> 3 15 0.2197481 0.4672470
#> 4 20 0.2324435 0.5144297
#> 5 25 0.2354728 0.5713321
#> 6 30 0.2360934 0.6048914
#> 7 35 0.2412944 0.6253026
#> 8 40 0.2383788 0.6364897
#> 9 45 0.2339483 0.6484721
plot(g, ylimits = c(0,0.85))
# }