geographical cross mapping cardinality
Usage
# S4 method for class 'sf'
gcmc(
data,
cause,
effect,
libsizes = NULL,
E = 3,
tau = 1,
k = pmin(E^2),
lib = NULL,
pred = NULL,
nb = NULL,
threads = detectThreads(),
parallel.level = "low",
bidirectional = TRUE,
detrend = FALSE,
progressbar = TRUE
)
# S4 method for class 'SpatRaster'
gcmc(
data,
cause,
effect,
libsizes = NULL,
E = 3,
tau = 1,
k = pmin(E^2),
lib = NULL,
pred = NULL,
threads = detectThreads(),
parallel.level = "low",
bidirectional = TRUE,
detrend = FALSE,
progressbar = TRUE
)
Arguments
- data
observation data.
- cause
name of causal variable.
- effect
name of effect variable.
- libsizes
(optional) number of spatial units used.
- E
(optional) embedding dimensions.
- tau
(optional) step of spatial lags.
- k
(optional) number of nearest neighbors.
- lib
(optional) libraries indices.
- pred
(optional) predictions indices.
- nb
(optional) neighbours list.
- threads
(optional) number of threads to use.
- parallel.level
(optional) level of parallelism,
low
orhigh
.- bidirectional
(optional) whether to examine bidirectional causality.
- detrend
(optional) whether to remove the linear trend.
- progressbar
(optional) whether to show the progress bar.
Value
A list
xmap
cross mapping results
cs
causal strength
varname
names of causal and effect variable
bidirectional
whether to examine bidirectional causality
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
g = gcmc(columbus,"hoval","crime",E = 2,k = 25)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
g
#> neighbors hoval->crime crime->hoval
#> 1 25 0.092 0.14
# }