Skip to contents

geographical cross mapping cardinality

Usage

# S4 method for class 'sf'
gcmc(
  data,
  cause,
  effect,
  libsizes = NULL,
  E = 3,
  k = pmin(E^2),
  tau = 1,
  style = 1,
  lib = NULL,
  pred = NULL,
  dist.metric = "L2",
  threads = detectThreads(),
  detrend = FALSE,
  parallel.level = "low",
  bidirectional = TRUE,
  progressbar = TRUE,
  nb = NULL
)

# S4 method for class 'SpatRaster'
gcmc(
  data,
  cause,
  effect,
  libsizes = NULL,
  E = 3,
  k = pmin(E^2),
  tau = 1,
  style = 1,
  lib = NULL,
  pred = NULL,
  dist.metric = "L2",
  threads = detectThreads(),
  detrend = FALSE,
  parallel.level = "low",
  bidirectional = TRUE,
  progressbar = TRUE,
  grid.coord = TRUE
)

Arguments

data

observation data.

cause

name of causal variable.

effect

name of effect variable.

libsizes

(optional) number of spatial units used.

E

(optional) embedding dimensions.

k

(optional) number of nearest neighbors.

tau

(optional) step of spatial lags.

style

(optional) embedding style (0 includes current state, 1 excludes it).

lib

(optional) libraries indices.

pred

(optional) predictions indices.

dist.metric

(optional) distance metric (L1: Manhattan, L2: Euclidean).

threads

(optional) number of threads to use.

detrend

(optional) whether to remove the linear trend.

parallel.level

(optional) level of parallelism, low or high.

bidirectional

(optional) whether to examine bidirectional causality.

progressbar

(optional) whether to show the progress bar.

nb

(optional) neighbours list.

grid.coord

(optional) whether to detrend using cell center coordinates (TRUE) or row/column numbers (FALSE).

Value

A list

xmap

cross mapping results

cs

causal strength

varname

names of causal and effect variable

bidirectional

whether to examine bidirectional causality

Examples

columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
g = gcmc(columbus,"hoval","crime",E = 7,k = 18)
#> 
Computing: [========================================] 100% (done)                         
#> 
Computing: [========================================] 100% (done)                         
g
#>   neighbors hoval->crime crime->hoval
#> 1        18     0.183642    0.2901235
# }