geographical cross mapping cardinality
Usage
# S4 method for class 'sf'
gcmc(
data,
cause,
effect,
libsizes = NULL,
E = 3,
k = pmin(E^2),
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
parallel.level = "low",
bidirectional = TRUE,
progressbar = TRUE,
nb = NULL
)
# S4 method for class 'SpatRaster'
gcmc(
data,
cause,
effect,
libsizes = NULL,
E = 3,
k = pmin(E^2),
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
parallel.level = "low",
bidirectional = TRUE,
progressbar = TRUE,
grid.coord = TRUE
)Arguments
- data
observation data.
- cause
name of causal variable.
- effect
name of effect variable.
- libsizes
(optional) number of spatial units used.
- E
(optional) embedding dimensions.
- k
(optional) number of nearest neighbors.
- tau
(optional) step of spatial lags.
- style
(optional) embedding style (
0includes current state,1excludes it).- lib
(optional) libraries indices.
- pred
(optional) predictions indices.
- dist.metric
(optional) distance metric (
L1: Manhattan,L2: Euclidean).- threads
(optional) number of threads to use.
- detrend
(optional) whether to remove the linear trend.
- parallel.level
(optional) level of parallelism,
loworhigh.- bidirectional
(optional) whether to examine bidirectional causality.
- progressbar
(optional) whether to show the progress bar.
- nb
(optional) neighbours list.
- grid.coord
(optional) whether to detrend using cell center coordinates (
TRUE) or row/column numbers (FALSE).
Value
A list
xmapcross mapping results
cscausal strength
varnamenames of causal and effect variable
bidirectionalwhether to examine bidirectional causality
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
g = gcmc(columbus,"hoval","crime",E = 7,k = 18)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
g
#> neighbors hoval->crime crime->hoval
#> 1 18 0.183642 0.2901235
# }