geographical cross mapping cardinality
Usage
# S4 method for class 'sf'
gcmc(
data,
cause,
effect,
E = 3,
tau = 1,
k = NULL,
r = 0,
lib = NULL,
pred = NULL,
nb = NULL,
threads = detectThreads(),
bidirectional = TRUE,
trend.rm = TRUE,
progressbar = TRUE
)
# S4 method for class 'SpatRaster'
gcmc(
data,
cause,
effect,
E = 3,
tau = 1,
k = NULL,
r = 0,
lib = NULL,
pred = NULL,
threads = detectThreads(),
bidirectional = TRUE,
trend.rm = TRUE,
progressbar = TRUE
)
Arguments
- data
The observation data.
- cause
Name of causal variable.
- effect
Name of effect variable.
- E
(optional) Dimensions of the embedding.
- tau
(optional) Step of spatial lags.
- k
(optional) Number of nearest neighbors used in intersection.
- r
(optional) Number of excluded neighbors in intersection.
- lib
(optional) Libraries indices.
- pred
(optional) Predictions indices.
- nb
(optional) The neighbours list.
- threads
(optional) Number of threads.
- bidirectional
(optional) whether to examine bidirectional causality.
- trend.rm
(optional) Whether to remove the linear trend.
- progressbar
(optional) whether to show the progress bar.
Value
A list
xmap
cross mapping results
varname
names of causal and effect variable
bidirectional
whether to examine bidirectional causality
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
g = gcmc(columbus,"hoval","crime",E = 5)
#>
Computing: [========================================] 100% (done)
#>
Computing: [========================================] 100% (done)
g
#> neighbors hoval->crime crime->hoval
#> 1 17 0.16609 0.2041522
# }