intersection cardinality
Usage
# S4 method for class 'sf'
ic(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 2:10,
tau = 1,
k = E + 2,
nb = NULL,
threads = detectThreads(),
parallel.level = "low",
detrend = FALSE
)
# S4 method for class 'SpatRaster'
ic(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 2:10,
tau = 1,
k = E + 2,
threads = detectThreads(),
parallel.level = "low",
detrend = FALSE
)
Arguments
- data
observation data.
- column
name of library variable.
- target
name of target variable.
- lib
(optional) libraries indices.
- pred
(optional) predictions indices.
- E
(optional) embedding dimensions.
- tau
(optional) step of spatial lags.
- k
(optional) number of nearest neighbors used.
- nb
(optional) neighbours list.
- threads
(optional) number of threads to use.
- parallel.level
(optional) level of parallelism,
low
orhigh
.- detrend
(optional) whether to remove the linear trend.
Value
A list
xmap
cross mapping performance
varname
name of target variable
method
method of cross mapping
tau
step of time lag
References
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research.
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
ic(columbus,"hoval","crime", E = 7, k = 15:25)
#> The suggested E and k for variable crime is 7 and 18
# }