optimal parameter search for intersection cardinality
Usage
# S4 method for class 'sf'
ic(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
nb = NULL
)
# S4 method for class 'SpatRaster'
ic(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
grid.coord = TRUE
)Arguments
- data
observation data.
- column
name of library variable.
- target
name of target variable.
- E
(optional) embedding dimensions.
- k
(optional) number of nearest neighbors used.
- tau
(optional) step of spatial lags.
- style
(optional) embedding style (
0includes current state,1excludes it).- lib
(optional) libraries indices (input needed:
vector- spatial vector,matrix- spatial raster).- pred
(optional) predictions indices (input requirement same as
lib).- dist.metric
(optional) distance metric (
L1: Manhattan,L2: Euclidean).- threads
(optional) number of threads to use.
- detrend
(optional) whether to remove the linear trend.
- nb
(optional) neighbours list.
- grid.coord
(optional) whether to detrend using cell center coordinates (
TRUE) or row/column numbers (FALSE).
Value
A list
xmapcross mapping performance
varnamename of target variable
methodmethod of cross mapping
References
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research.
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg",package="spEDM"))
# \donttest{
ic(columbus,"hoval","crime",E = 7,k = 15:25)
#> The suggested E,k,tau for variable crime is 7, 18 and 1
# }