intersection cardinality
Usage
# S4 method for class 'sf'
ic(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
parallel.level = "low",
nb = NULL
)
# S4 method for class 'SpatRaster'
ic(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
parallel.level = "low",
grid.coord = TRUE
)Arguments
- data
observation data.
- column
name of library variable.
- target
name of target variable.
- E
(optional) embedding dimensions.
- k
(optional) number of nearest neighbors used.
- tau
(optional) step of spatial lags.
- style
(optional) embedding style (
0includes current state,1excludes it).- lib
(optional) libraries indices.
- pred
(optional) predictions indices.
- dist.metric
(optional) distance metric (
L1: Manhattan,L2: Euclidean).- threads
(optional) number of threads to use.
- detrend
(optional) whether to remove the linear trend.
- parallel.level
(optional) level of parallelism,
loworhigh.- nb
(optional) neighbours list.
- grid.coord
(optional) whether to detrend using cell center coordinates (
TRUE) or row/column numbers (FALSE).
Value
A list
xmapcross mapping performance
varnamename of target variable
methodmethod of cross mapping
taustep of time lag
References
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research.
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
ic(columbus,"hoval","crime", E = 7, k = 15:25)
#> The suggested E and k for variable crime is 7 and 18
# }