Skip to contents

spatial (granger) causality test

Usage

# S4 method for class 'sf'
sc.test(
  data,
  cause,
  effect,
  k,
  block = 3,
  boot = 399,
  seed = 42,
  base = 2,
  nb = NULL,
  threads = detectThreads(),
  symbolize = TRUE,
  normalize = FALSE,
  progressbar = FALSE
)

# S4 method for class 'SpatRaster'
sc.test(
  data,
  cause,
  effect,
  k,
  block = 3,
  boot = 399,
  seed = 42,
  base = 2,
  threads = detectThreads(),
  symbolize = TRUE,
  normalize = FALSE,
  progressbar = FALSE
)

Arguments

data

The observation data.

cause

Name of causal variable.

effect

Name of effect variable.

k

(optional) Number of nearest neighbors used for symbolization.

block

(optional) Number of blocks used for spatial block bootstrap.

boot

(optional) Number of bootstraps to perform.

seed

(optional) The random seed.

base

(optional) Base of the logarithm.

nb

(optional) The neighbours list.

threads

(optional) Number of threads.

symbolize

(optional) Whether to apply the symbolic map process.

normalize

(optional) Whether to normalize the result to [-1, 1].

progressbar

(optional) Whether to print the progress bar.

Value

A list

sc

statistic for spatial causality

varname

names of causal and effect variable

References

Herrera, M., Mur, J., & Ruiz, M. (2016). Detecting causal relationships between spatial processes. Papers in Regional Science, 95(3), 577–595.

Examples

columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
sc.test(columbus,"hoval","crime", k = 15)
#> spatial (granger) causality test
#> hoval -> crime: statistic = 1.101, p value = 0.526
#> crime -> hoval: statistic = 1.484, p value = 0.023
# }