spatial (granger) causality test
Usage
# S4 method for class 'sf'
sc.test(
data,
cause,
effect,
k,
block = 3,
boot = 399,
seed = 42,
base = 2,
nb = NULL,
threads = detectThreads(),
symbolize = TRUE,
normalize = FALSE,
progressbar = FALSE
)
# S4 method for class 'SpatRaster'
sc.test(
data,
cause,
effect,
k,
block = 3,
boot = 399,
seed = 42,
base = 2,
threads = detectThreads(),
symbolize = TRUE,
normalize = FALSE,
progressbar = FALSE
)
Arguments
- data
The observation data.
- cause
Name of causal variable.
- effect
Name of effect variable.
- k
(optional) Number of nearest neighbors used for symbolization.
- block
(optional) Number of blocks used for spatial block bootstrap.
- boot
(optional) Number of bootstraps to perform.
- seed
(optional) The random seed.
- base
(optional) Base of the logarithm.
- nb
(optional) The neighbours list.
- threads
(optional) Number of threads.
- symbolize
(optional) Whether to apply the symbolic map process.
- normalize
(optional) Whether to normalize the result to
[-1, 1]
.- progressbar
(optional) Whether to print the progress bar.
References
Herrera, M., Mur, J., & Ruiz, M. (2016). Detecting causal relationships between spatial processes. Papers in Regional Science, 95(3), 577–595.
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
sc.test(columbus,"hoval","crime", k = 15)
#> spatial (granger) causality test
#> hoval -> crime: statistic = 1.101, p value = 0.526
#> crime -> hoval: statistic = 1.484, p value = 0.023
# }