Skip to contents

simplex forecast

Usage

# S4 method for class 'sf'
simplex(
  data,
  target,
  lib = NULL,
  pred = NULL,
  E = 1:10,
  tau = 1,
  k = E + 2,
  nb = NULL,
  threads = detectThreads(),
  trend.rm = TRUE
)

# S4 method for class 'SpatRaster'
simplex(
  data,
  target,
  lib = NULL,
  pred = NULL,
  E = 1:10,
  tau = 1,
  k = E + 2,
  threads = detectThreads(),
  trend.rm = TRUE
)

Arguments

data

The observation data.

target

Name of target variable.

lib

(optional) Libraries indices.

pred

(optional) Predictions indices.

E

(optional) Dimensions of the embedding.

tau

(optional) Step of spatial lags.

k

(optional) Number of nearest neighbors used for prediction.

nb

(optional) The neighbours list.

threads

(optional) Number of threads.

trend.rm

(optional) Whether to remove the linear trend.

Value

A list

xmap

self mapping prediction results

varname

name of target variable

References

Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734-741.

Examples

columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
simplex(columbus,target = "crime")
#> The suggested E and k for variable crime is 5 and 8 
# }