simplex forecast
Usage
# S4 method for class 'sf'
simplex(
data,
target,
lib = NULL,
pred = NULL,
E = 1:10,
tau = 1,
k = E + 2,
nb = NULL,
threads = detectThreads(),
trend.rm = TRUE
)
# S4 method for class 'SpatRaster'
simplex(
data,
target,
lib = NULL,
pred = NULL,
E = 1:10,
tau = 1,
k = E + 2,
threads = detectThreads(),
trend.rm = TRUE
)
Arguments
- data
The observation data.
- target
Name of target variable.
- lib
(optional) Libraries indices.
- pred
(optional) Predictions indices.
- E
(optional) Dimensions of the embedding.
- tau
(optional) Step of spatial lags.
- k
(optional) Number of nearest neighbors used for prediction.
- nb
(optional) The neighbours list.
- threads
(optional) Number of threads.
- trend.rm
(optional) Whether to remove the linear trend.
References
Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734-741.
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
simplex(columbus,target = "crime")
#> The suggested E and k for variable crime is 5 and 8
# }