simplex forecast
Usage
# S4 method for class 'sf'
simplex(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
stack = FALSE,
lib = NULL,
pred = NULL,
dist.metric = "L2",
dist.average = TRUE,
threads = detectThreads(),
detrend = TRUE,
nb = NULL
)
# S4 method for class 'SpatRaster'
simplex(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
stack = FALSE,
lib = NULL,
pred = NULL,
dist.metric = "L2",
dist.average = TRUE,
threads = detectThreads(),
detrend = TRUE,
grid.coord = TRUE,
embed.direction = 0
)Arguments
- data
observation data.
- column
name of library variable.
- target
name of target variable.
- E
(optional) embedding dimensions.
- k
(optional) number of nearest neighbors used.
- tau
(optional) step of spatial lags.
- style
(optional) embedding style (
0includes current state,1excludes it).- stack
(optional) whether to stack embeddings.
- lib
(optional) libraries indices.
- pred
(optional) predictions indices.
- dist.metric
(optional) distance metric (
L1: Manhattan,L2: Euclidean).- dist.average
(optional) whether to average distance.
- threads
(optional) number of threads to use.
- detrend
(optional) whether to remove the linear trend.
- nb
(optional) neighbours list.
- grid.coord
(optional) whether to detrend using cell center coordinates (
TRUE) or row/column numbers (FALSE).- embed.direction
(optional) direction selector for embeddings (
0returns all directions,1-8correspond to NW, N, NE, W, E, SW, S, SE).
Value
A list
xmapforecast performance
varnamename of target variable
methodmethod of cross mapping
taustep of time lag
References
Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734-741.
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
# \donttest{
simplex(columbus,"inc","crime")
#> The suggested E and k for variable crime is 5 and 6
# }