simplex forecasting
Usage
# S4 method for class 'sf'
simplex(
data,
target,
lib,
pred = lib,
E = 1:10,
tau = 1,
k = 4,
nb = NULL,
threads = detectThreads(),
trend.rm = TRUE
)
# S4 method for class 'SpatRaster'
simplex(
data,
target,
lib,
pred = lib,
E = 1:10,
tau = 1,
k = 4,
threads = detectThreads(),
trend.rm = TRUE
)
Arguments
- data
The observation data.
- target
Name of target variable.
- lib
Row numbers(
vector
) of lattice data or row-column numbers(matrix
) of grid data for creating the library from observations.- pred
(optional) Row numbers(
vector
) of lattice data or row-column numbers(matrix
) of grid data used for predictions.- E
(optional) Dimensions of the embedding.
- tau
(optional) Step of spatial lags.
- k
(optional) Number of nearest neighbors to use for prediction.
- nb
(optional) The neighbours list.
- threads
(optional) Number of threads.
- trend.rm
(optional) Whether to remove the linear trend.
Examples
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData"))
# \donttest{
simplex(columbus,target = "CRIME",lib = 1:49)
#> The suggested embedding dimension E for variable CRIME is 6
#> E rho mae rmse
#> [1,] 1 0.5582378 10.187568 14.18034
#> [2,] 2 0.5973572 9.330923 13.76604
#> [3,] 3 0.6012386 9.947011 13.73818
#> [4,] 4 0.5949300 10.559699 14.05813
#> [5,] 5 0.6392106 9.460928 13.08035
#> [6,] 6 0.6442922 9.438912 12.99714
#> [7,] 7 0.6356835 9.578565 13.14957
#> [8,] 8 0.6371715 9.541046 13.13519
#> [9,] 9 0.6370924 9.542534 13.13622
#> [10,] 10 0.6370924 9.542534 13.13622
# }