spatial logistic map
Usage
# S4 method for class 'sf'
slm(
data,
x = NULL,
y = NULL,
z = NULL,
k = 4,
step = 15,
alpha_x = 0.28,
alpha_y = 0.25,
alpha_z = 0.22,
beta_xy = 0.05,
beta_xz = 0.05,
beta_yx = 0.2,
beta_yz = 0.2,
beta_zx = 0.35,
beta_zy = 0.35,
threshold = Inf,
transient = 1,
interact = "local",
nb = NULL
)
# S4 method for class 'SpatRaster'
slm(
data,
x = NULL,
y = NULL,
z = NULL,
k = 4,
step = 15,
alpha_x = 0.28,
alpha_y = 0.25,
alpha_z = 0.22,
beta_xy = 0.05,
beta_xz = 0.05,
beta_yx = 0.2,
beta_yz = 0.2,
beta_zx = 0.35,
beta_zy = 0.35,
threshold = Inf,
transient = 1,
interact = "local"
)
Arguments
- data
observation data.
- x
(optional) name of first spatial variable.
- y
(optional) name of second spatial variable.
- z
(optional) name of third spatial variable.
- k
(optional) number of neighbors to used.
- step
(optional) number of simulation time steps.
- alpha_x
(optional) growth parameter for x.
- alpha_y
(optional) growth parameter for y.
- alpha_z
(optional) growth parameter for y.
- beta_xy
(optional) cross-inhibition from x to y.
- beta_xz
(optional) cross-inhibition from x to z.
- beta_yx
(optional) cross-inhibition from y to x.
- beta_yz
(optional) cross-inhibition from y to z.
- beta_zx
(optional) cross-inhibition from z to x.
- beta_zy
(optional) cross-inhibition from z to y.
- threshold
(optional) set to
NaN
if the absolute value exceeds this threshold.- transient
(optional) transients to be excluded from the results.
- interact
(optional) type of cross-variable interaction (
local
orneighbors
).- nb
(optional) neighbours list.
References
Willeboordse, F.H., The spatial logistic map as a simple prototype for spatiotemporal chaos, Chaos, 533–540 (2003).
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
columbus$inc = sdsfun::normalize_vector(columbus$inc)
slm(columbus,"inc")
#> $x
#> [1] 0.8985452 0.8981079 0.8996913 0.9023158 0.9012219 0.8993983 0.9014626
#> [8] 0.9011186 0.8995365 0.8998710 0.9016004 0.9012866 0.9013377 0.9012993
#> [15] 0.9013809 0.9016145 0.9011292 0.9007474 0.9009183 0.8921125 0.9012053
#> [22] 0.9011153 0.8965553 0.9003072 0.9015806 0.9015707 0.9009719 0.9016084
#> [29] 0.9015113 0.9003335 0.8988599 0.8961461 0.9011855 0.8993310 0.9005378
#> [36] 0.8983525 0.8996417 0.9010866 0.8981711 0.8921503 0.8963681 0.8953344
#> [43] 0.9005191 0.8994458 0.8999111 0.8982211 0.8981183 0.9004515 0.8985699
#>