Skip to contents

smap forecasting

Usage

# S4 method for class 'sf'
smap(
  data,
  target,
  lib,
  pred = lib,
  E = 3,
  tau = 1,
  k = 4,
  theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
    4, 6, 8),
  nb = NULL,
  threads = detectThreads(),
  trend.rm = TRUE
)

# S4 method for class 'SpatRaster'
smap(
  data,
  target,
  lib,
  pred = lib,
  E = 3,
  tau = 1,
  k = 4,
  theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
    4, 6, 8),
  threads = detectThreads(),
  trend.rm = TRUE
)

Arguments

data

The observation data.

target

Name of target variable.

lib

Row numbers(vector) of lattice data or row-column numbers(matrix) of grid data for creating the library from observations.

pred

(optional) Row numbers(vector) of lattice data or row-column numbers(matrix) of grid data used for predictions.

E

(optional) Dimensions of the embedding.

tau

(optional) Step of spatial lags.

k

(optional) Number of nearest neighbors to use for prediction.

theta

(optional) Weighting parameter for distances

nb

(optional) The neighbours list.

threads

(optional) Number of threads.

trend.rm

(optional) Whether to remove the linear trend.

Value

A matrix

Examples

columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData"))
# \donttest{
smap(columbus,target = "INC",lib = 1:49)
#> The suggested theta for variable INC is 8 
#>        theta         rho      mae     rmse
#>  [1,] 0.0000 -0.01677569 87.28026 301.3538
#>  [2,] 0.0001 -0.01677581 87.28042 301.3546
#>  [3,] 0.0003 -0.01677605 87.28073 301.3562
#>  [4,] 0.0010 -0.01677689 87.28182 301.3618
#>  [5,] 0.0030 -0.01677928 87.28493 301.3778
#>  [6,] 0.0100 -0.01678759 87.29580 301.4335
#>  [7,] 0.0300 -0.01681079 87.32671 301.5927
#>  [8,] 0.1000 -0.01706041 87.53217 302.1522
#>  [9,] 0.3000 -0.01722288 87.80006 303.7144
#> [10,] 0.5000 -0.01718827 88.01756 305.2364
#> [11,] 0.7500 -0.01731426 88.39731 307.0872
#> [12,] 1.0000 -0.01740398 88.76569 308.8671
#> [13,] 1.5000 -0.02062485 89.97208 312.2235
#> [14,] 2.0000 -0.02279413 89.64727 315.0630
#> [15,] 3.0000 -0.01883577 91.38497 320.1625
#> [16,] 4.0000 -0.01736336 92.44264 323.8490
#> [17,] 6.0000 -0.01984894 92.85440 328.2862
#> [18,] 8.0000 -0.01513727 93.27553 330.2034
# }